Discovering Temporal Knowledge in Multivariate Time Series
نویسندگان
چکیده
An overview of the Time Series Knowledge Mining framework to discover knowledge in multivariate time series is given. A hierarchy of temporal patterns, which are not a priori given, is discovered. The patterns are based on the rule language Unification-based Temporal Grammar. A semiotic hierarchy of temporal concepts is build in a bottom up manner from multivariate time instants. We describe the mining problem for each rule discovery step. Several of the steps can be performed with well known data mining algorithms. We present novel algorithms that perform two steps not covered by existing methods. First results on a dataset describing muscle activity during sports are presented.
منابع مشابه
A Model-Based Multivariate Time Series Clustering Algorithm
Given a set of multivariate time series, the problem of clustering such data is concerned with the discovering of inherent groupings of the data according to how similar or dissimilar the time series are to each other. Existing time series clustering algorithms can divide into three types, raw-based, featurebased and model-based. In this paper, a model-based multivariate time series clustering ...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملMining Hierarchical Temporal Patterns in Multivariate Time Series
The Unification-based Temporal Grammar is a temporal extension of static unification-based grammars. It defines a hierarchical temporal rule language to express complex patterns present in multivariate time series. The Temporal Data Mining Method is the accompanying framework to discover temporal knowledge based on this rule language. A semiotic hierarchy of temporal patterns, which are not a p...
متن کاملMedical Temporal-Knowledge Discovery via Temporal Abstraction
Medical knowledge includes frequently occurring temporal patterns in longitudinal patient records. These patterns are not easily detectable by human clinicians. Current knowledge could be extended by automated temporal data mining. However, multivariate time-oriented data are often present at various levels of abstraction and at multiple temporal granularities, requiring a transformation into a...
متن کاملDiscovering Temporal Knowledge from a Crisscross of Timed Observations
This paper is concerned with the discovering of temporal knowledge from a sequence of timed observations provided by a system monitoring of dynamic process. The discovering process is based on the Stochastic Approach framework where a series of timed observations is represented with a Markov chain. From this representation, a set of timed sequential binary relations between discrete event class...
متن کامل